Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering **BEC015 - ASIC DESIGN** Sixth Semester, 2016-17 (even Semester)

Course (catalog) description

An **application-specific integrated circuit (ASIC)** is an integrated circuit customized for a particular use, rather than intended for general-purpose use. In this course, the reader is introduced to various ASIC architectures, ASIC design flow, issues in ASIC design and testing of ASICs and also about SOC Design

Compulsory/Elective course: Elective for ECE students

Credit & contact	
hours	: 3 & 45

:

Course Coordinator : Ms.G.Meenakumari, Asst. Professor.

Instructor(s)

Name of the instructor	Class handling	Office location	Office phone	Email domain:	Consultation
				@bharathuniv.ac.in	
					12.30-1.30 PM
Ms.G.Meenakumari	IV year	SA block		meenakumari.ece	
Ms. G. Jeyalakshmi	IV year	SA block			12.30-1.30 PM

Relationship to other courses

Pre – requiste	: Principles of Digital Electronics
Assume Knowledge	: Basic knowledge in Digital System Design and Electronic circuits

Following courses : Nil

Syllabus Contents

INTRODUCTION TO ASICS, CMOS LOGIC, ASIC LIBRARY DESIGN 9 HOURS

Types of ASICs - Design flow – CMOS transistors- CMOS Design rules –Combinational logic Cell Sequential logic cell - Transistor as Resistors - Transistor parasitic capacitance – Logical effort - Library cell design – Library architecture.

PROGRAMMABLE ASICS, PROGRAMMABLE ASIC LOGIC CELLS AND PROGRAMMABLE ASIC I/O CELLS 9 HOURS

Anti fuse - Static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA – Altera FLEX - Altera MAX DC & AC inputs and outputs - Xilinx I/O blocks.

PROGRAMMABLE ASIC INTERCONNECT, PROGRAMMABLE ASIC 09 DESIGN SOFTWARE AND LOW LEVEL DESIGN 9 HOURS

Entry: Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX – Design systems - Logic Synthesis - Half gate ASIC -Low level design language - PLA tools EDIF- CFI design representation.

SILICON ON CHIP DESIGN

Voice over IP SOC - Intellectual Property – SOC Design challenges- Methodology and design-FPGA to ASIC conversion – Design for integration-SOC verification-Set top box SOC.

9 HOURS

9 HOURS

PHYSICAL AND LOW POWER DESIGN

Over view of physical design flow- tips and guideline for physical design- modern physical design techniques- power dissipation-low power design techniques and methodologies-low power design tools- tips and guideline for low power design.

Text book(s) and/or required materials

REFERENCES :

- R1 M.J.S. Smith, —Application Specific Integrated Circuits , Pearson Education, 2008
- R2 Wayne Wolf, —FPGA-Based System Design , Prentice Hall PTR, 2009.
- R3 Farzad Nekoogar and Faranak Nekoogar, —From ASICs to SOCs: A Practical Approach, Prentice Hall PTR, 2003.
- R4 www.vhdl.org/rassp/vhdl/guidelines/DesignReq.pdf

Computer usage: Nil		
Professional component General	- 0%	
Basic Sciences	- 0%	
Engineering sciences & Technical arts	- 0%	
Professional subject	- 100%	

Broad area : Communication | Signal Processing | Electronics | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd Week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd Week	Session 15 to 27	2 Periods
3	Model Test	April 3 rd Week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

Learn about the various ASIC architectures, ASIC design flow, issues in ASIC design and testing of ASICs and also about SOC Design	Co	Correlates to program outcome	
	Н	М	L
1 Recognize need for programmable devices.	a,h	c,e,f,g,i	k
2.Describe architecture of programmable devices.	c,g,j	а	b,i
3.Explain programmable methodologies.	b,k	a, c,g,h,i	-
4. Recall IC fabrication techniques vis-à-vis CMOS switch	b,c	a,e,i,k	-
5. Relate design and implementation flow for PLDs		e,f,g,k	b,i
6. low power design techniques and methodologies.	f	d,e,g	-

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture

Session	Topics	Problem Solving (Yes/No)	Text / Chapter
UNITI : INTRODU	JCTION TO ASICS, CMOS LOGIC, ASIC LIBRAR	Y DESIGN	
1,2	Types of ASICs & Design flow	No	R1-Chapter 1
3	CMOS transistors & CMOS Design rules	No	R1-Chapter 2
4	Combinational logic Cell	No	
5	Sequential logic cell	No	-
6	Transistor as Resistors - Transistor	No	
	parasitic capacitance		
7	Logical effort	No	
8	Library cell design	No	R1-Chapter 3
9	Library architecture.	No	
CELLS	MMABLE ASICS, PROGRAMMABLE ASIC LOG	1	-
10	Anti fuse	No	R1-Chapter 4
11	Static RAM - EPROM and EEPROM	No	
10	technology, PREP benchmarks	Ne	D4 Charter 5
12	Actel ACT	No	R1-Chapter 5
13	Altera FLEX	No	-
14	Altera MAX	No	-
15,16	DC & AC inputs and outputs	No	
17,18	Xilinx I/O blocks	No	R1-Chapter 6
UNIT III PROGRA	AMMABLE ASIC INTERCONNECT, PROGRAMN	IABLE ASIC DESIGN	
19	Actel ACT	No	R1-Chapter 7
20	Xilinx LCA	No	_
21	Xilinx EPLD	No	_
22	Altera MAX 5000 and 7000	No	_
23	Altera MAX 9000, Altera FLEX	No	
24	Design systems & Logic Synthesis	No	R1-Chapter 8
25	Half gate ASIC	No	
26	Low level design language, PLA tools	No	R1-Chapter 9
27	EDIF- CFI design representation.	No	
UNITIV- SILICON	I ON CHIP DESIGN	-	
28,29	Voice over IP SOC - Intellectual Property	No	R3 – Chapter 1
30,31	SOC Design challenges- Methodology	No	
	and design		
32	FPGA to ASIC conversion	No	R3 –Chapter 2
33	Design for integration	No	R3 –Chapter 3
34,35	SOC verification	No	
36	Set top box SOC	No	
UNIT-V- PHYSIC	AL AND LOW POWER DESIGN		<u> </u>
37	Over view of physical design flow	No	R3 Chapter 4

38	Tips and guideline for physical design	No	
39,40	modern physical design techniques	No	
41,42	power dissipation -low power design techniques and methodologies	No	R3 Chapter 5
43	low power design tools	No	
44,45	tips and guideline for low power design.	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
 Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies		
Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /Seminar/online test/quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: Ms.G.Meenakumari, Asst. Professor

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a. An ability to apply knowledge of mathematics, science, and engineering
- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively
- h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i. A recognition of the need for, and an ability to engage in life-long learning
- j. A knowledge of contemporary issues
- k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM

Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentallyresponsible and also to innovate continuously for societal improvement.

Course Teacher	Signature
Ms.G.Meenakumari	
Ms. G. Jeyalakshmi	

Course Coordinator

HOD/ECE